合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 6種短鏈醇溶液分子結構對表面張力和表面吸附性能的影響
> 利用溶液的張力,設計一種用于精密分區腐蝕又不接觸晶圓表面的隔離網筒
> 過硫酸鉀、K2S2O8對壓裂液破膠性能與表面張力的影響——結果與討論、結論
> 振蕩頻率、濃度、油相、界面張力對陰離子表面活性劑HABS和PS界面模量的影響(一)
> 助劑臨界膠束濃度對芒果細菌性角斑病防治藥劑表面張力的影響(三)
> 耐擦刮無膠消光膜制備方法、高表面張力與收解卷順暢性的平衡(一)
> 納米沸石咪唑酯骨架ZIF-8顆粒的油水界面張力和接觸角測定及巖心驅替實驗——摘要、材料與方法
> 浮選藥劑的性能、組合用藥機理及協同效應的影響因素(二)
> 改性環氧樹脂乳液型碳纖維上漿劑制備、表面張力、黏度等性能測試(三)
> 最大氣泡壓力法表面張力的測量原理
推薦新聞Info
-
> 超低界面張力環保型高溫高鹽油藏的驅油表面活性劑配方比例及制備(二)
> 超低界面張力環保型高溫高鹽油藏的驅油表面活性劑配方比例及制備(一)
> 表面張力和接觸角的關系|寶玉石接觸角的測量結果和表面張力計算方法(三)
> 表面張力和接觸角的關系|寶玉石接觸角的測量結果和表面張力計算方法(二)
> 表面張力和接觸角的關系|寶玉石接觸角的測量結果和表面張力計算方法(一)
> 表面張力儀系統測定:溫度范圍內甲基九氟丁醚的液相密度與表面張力
> 一套低溫、高壓懸滴法表面張力實驗測量系統實踐效果(三)
> 一套低溫、高壓懸滴法表面張力實驗測量系統實踐效果(二)
> 一套低溫、高壓懸滴法表面張力實驗測量系統實踐效果(一)
> 不同溫度下純有機物液體表面張力估算方法及關聯方程(二)
預測納米孔中油氣界面張力的狀態方程模型構建
來源:大慶石油地質與開發 瀏覽 1314 次 發布時間:2023-12-26
頁巖油氣和致密油氣具有重要的開采價值[1-2]。與常規的油氣藏相比,頁巖儲層和致密儲層的孔隙達到納米級,在納米孔內的受限流體的界面張力(IFT)不同于常規的體積流體。因此,建立預測納米孔中油氣界面張力模型,對頁巖油氣和致密油氣勘探開發具有重要意義。
付東等[3]基于二階微擾理論建立狀態方程(EoS)模型,并結合密度泛函理論,研究不同量程參數的Yukawa流體的界面張力.李小森等[4]基于基礎度量理論,密度泛函理論和一階平均球近似理論建立Lennard-Jones(LJ)流體自由能模型,研究汽液平衡時的界面張力。曾志勇等[5]基于狀態方程和毛細管Kelvin模型,建立甲烷水合物和二氧化碳水合物界面張力預測模型。近年來,許多學者研究受限流體的臨界屬性移位現象[6]。Zhang等[7]基于修正的Peng-Robinson(PR)EoS,提出一種遞減界面張力法計算最小混相壓力。Zhang等[8]基于van der Waals(vdW)EoS和受限流體臨界溫度和壓力移位建立一個半解析狀態方程。Zhang等[9]將Travalloni等[10]提出的納米孔吸附理論引入到狀態方程中,并推導預測吸附厚度的經驗關聯式。Zhang等[11]設計納米實驗裝置并測量在納米孔中的界面張力,同時提出計算納米孔中界面張力的理論方法。
頁巖包含有礦物孔及有機孔等復雜孔隙類型,在狀態方程模型中,所有孔隙類型均假設為圓柱孔[8]。因此,孔隙對模型的影響簡化成孔隙半徑對模型預測結果的影響。Jin等[12]將孔隙分為三種類型:孔隙尺寸大于10 nm,孔隙中的吸附作用很弱且可以忽略,孔隙中流體是均勻的,常規的狀態方程能夠描述流體的相行為;孔隙尺寸小于等于10 nm,孔隙中有很強的吸附作用,孔隙中流體是非均勻的,常規的狀態方程不能用于非均勻體系,應該采用分子模擬方法,例如蒙特卡洛模擬;最后一種類型是分子移向干酪根。Tan等[13]的研究表明,狀態方程不能描述孔隙中流體的吸附過程。本文針對孔隙尺寸大于10 nm的均勻流體,只考慮流體之間的相互作用,忽略分子—孔隙之間的相互作用。
本文基于修正的SRK狀態方程和修正的vdW混合規則,建立一個預測納米孔中油氣界面張力的狀態方程模型,該模型能描述納米孔中孔隙半徑和分子—分子間相互作用的影響。將狀態方程與等張比容模型結合,建立基于氣液相平衡的界面張力計算模型,并提出具體計算方法。建立的SRK模型的預測結果與vdW模型[11]和實驗數據進行對比分析。同時,分析壓力、溫度和孔隙半徑對流體界面張力的影響。準確計算納米孔內流體的界面張力在油田勘探開發中具有重要作用,如注二氧化碳提高采收率過程中,準確計算界面張力是合理設計注入參數的重要條件之一,此外,界面張力還可作為混相判據,是混相驅的重要參數之一;在油藏數值模擬過程中,準確的狀態方程提高組分模擬的精度,并被廣泛地運用于注二氧化碳驅模擬。
界面張力
Zhang等[11]設計出納米實驗裝置,并測量甲烷-正葵烷(C1-nC10)和氮氣-正葵烷(N2-nC10)混合物在納米孔(rp=50 nm)中的界面張力,其具體測量值見表1。對比實驗測量的界面張力與模型預測值,是檢驗建模正確性的重要方法之一。因此,筆者對不同溫度下的C1-nC10和N2-nC10混合物的界面張力進行預測,其使用到的純組分狀態方程參數列于表2。
表1 C1-nC10和N2-nC10混合物在298.15 K、326.15 K下的納米孔中測量和模型預測的界面張力(IFT)
表2本文使用的純物質狀態方程參數
結論
(1)基于修正的SRK狀態方程和修正的vdW混合規則,建立一個預測納米孔中油氣界面張力的狀態方程模型,該模型能描述納米孔中孔隙半徑和分子—分子間相互作用的影響。
(2)與vdW模型和實驗數據對比表明:在相同的溫度下,隨著壓力的升高,C1-nC10和N2-nC10混合物在納米孔中的界面張力逐漸減小,SRK和vdW模型均能準確地預測界面張力。
(3)通過SRK模型對體積相和納米孔中的界面張力預測表明:在相同的溫度壓力條件下,體積相中的C1-nC10和N2-nC10混合物界面張力大于納米孔中的界面張力。對不同孔隙半徑的納米孔中的界面張力預測表明:隨著孔隙半徑的減小,混合物的界面張力逐漸減小,且在較低的壓力下,孔隙半徑越小,界面張力的減小程度越大,而在較高的壓力下,由于界面張力比較小,孔隙半徑的影響也較小。
(4)在相同的壓力和孔徑下,隨著溫度升高,混合物的界面張力逐漸減小,在較高的溫度下,界面張力減小程度增加。在相同的溫度和壓力下,孔隙半徑越小,界面張力的減小程度越大,界面張力越小。
(5)在相同的溫度壓力下,孔隙半徑越小,界面張力的減小程度越大,界面張力越小;當孔徑大于50 nm時,隨著孔徑的增加,界面張力幾乎不變,表明孔隙對流體的影響幾乎可以忽略。
(6)SRK模型能準確地預測納米孔中的界面張力,為預測納米孔中油氣界面張力提供了一種新思路。





