合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 烷基糖苷檸檬酸單酯二鈉鹽水溶液的動態(tài)表面張力測定及影響因素(下)
> β-乳球蛋白質(zhì)納米纖維制備及界面吸附和界面流變行為分析——摘要、材料與方法
> 不同助劑及濃度對IDK120-025型和LU120-015型噴頭霧化效果的影響(三)
> 過硫酸鉀、K2S2O8對壓裂液破膠性能與表面張力的影響——實(shí)驗部分
> 棕櫚酸二甘醇酰胺無堿條件下降低大慶原油/地層水界面張力——摘要、材料與方法
> 便攜式自動表面張力儀主要技術(shù)特征
> 礦用塵克(C&C)系列除塵劑對大采高工作面截割煤塵的降塵效率影響(三)
> 馬來酰蓖麻油酸聚乙二醇酯的表面張力、等物化性能測定(一)
> 油田用酸化增產(chǎn)增注劑成分配方比例變動對油水的界面張力的影響
> 氣液液微分散體系的微流控制備方法及在稀土離子萃取領(lǐng)域的應(yīng)用(下)
推薦新聞Info
-
> 超低界面張力環(huán)保型高溫高鹽油藏的驅(qū)油表面活性劑配方比例及制備(二)
> 超低界面張力環(huán)保型高溫高鹽油藏的驅(qū)油表面活性劑配方比例及制備(一)
> 表面張力和接觸角的關(guān)系|寶玉石接觸角的測量結(jié)果和表面張力計算方法(三)
> 表面張力和接觸角的關(guān)系|寶玉石接觸角的測量結(jié)果和表面張力計算方法(二)
> 表面張力和接觸角的關(guān)系|寶玉石接觸角的測量結(jié)果和表面張力計算方法(一)
> 表面張力儀系統(tǒng)測定:溫度范圍內(nèi)甲基九氟丁醚的液相密度與表面張力
> 一套低溫、高壓懸滴法表面張力實(shí)驗測量系統(tǒng)實(shí)踐效果(三)
> 一套低溫、高壓懸滴法表面張力實(shí)驗測量系統(tǒng)實(shí)踐效果(二)
> 一套低溫、高壓懸滴法表面張力實(shí)驗測量系統(tǒng)實(shí)踐效果(一)
> 不同溫度下純有機(jī)物液體表面張力估算方法及關(guān)聯(lián)方程(二)
分子動力學(xué)模擬不同濃度仿生黏液-水界面的界面張力
來源:潤滑與密封 瀏覽 802 次 發(fā)布時間:2025-04-14
隨著科學(xué)技術(shù)的迅速發(fā)展,仿生表面在體育、醫(yī)療、化學(xué)、軍事發(fā)展和交通等方面表現(xiàn)出了極為可觀的應(yīng)用前景并吸引了許多研究者。與此同時,水下浸沒的固體仿生表面對其實(shí)現(xiàn)減阻功能起著至關(guān)重要的作用,而界面的穩(wěn)定性直接影響界面的疏水和滑移性能。許多因素如沖擊、靜水壓力、流體流動等都容易引起超疏水界面失穩(wěn)。BICO等定性地說明了側(cè)壁結(jié)構(gòu)(突出的尖角)能夠釘扎液氣界面,有利于液氣界面保持穩(wěn)定。NOSONOVSKY從系統(tǒng)最小自由能出發(fā)揭示了液氣界面穩(wěn)定性判據(jù),提出了壁面多級多尺度微結(jié)構(gòu)有助于防止液氣界面失穩(wěn)。WHYMAN、BORMASHENKO從能量的角度說明了側(cè)壁次級微結(jié)構(gòu)能夠增大系統(tǒng)從Cassie-Baxter(CB)狀態(tài)向Wenzel(W)狀態(tài)的浸潤轉(zhuǎn)變的能量勢壘,為了維持超疏水特性,需要維持Cassie-Baxter狀態(tài)氣層的穩(wěn)定性,從而有效避免液氣界面失穩(wěn)。WU等基于熱力學(xué)原理提出液滴浸潤多級微結(jié)構(gòu)的理論模型,得到了側(cè)壁次級微結(jié)構(gòu)有助于增大液氣界面在壁面上的接觸角和增大系統(tǒng)浸潤轉(zhuǎn)變能量勢壘的結(jié)論。現(xiàn)有的這些工作表明界面穩(wěn)定性對界面的疏水和滑移性能起著至關(guān)重要的作用。然而,目前的研究尚不完善,在微觀方面缺乏研究,沒有從分子動力學(xué)方面對界面穩(wěn)定性展開詳細(xì)分析。
本文作者運(yùn)用分子動力學(xué)模擬方法,采用透明質(zhì)酸溶液模擬仿生黏液,構(gòu)建不同質(zhì)量分?jǐn)?shù)下仿生黏液體系的模型,考察仿生黏液體系與水相界面行為隨時間的變化規(guī)律;采用勢能函數(shù)模型,通過不同質(zhì)量分?jǐn)?shù)仿生黏液-水界面張力和界面相互作用能等參數(shù)表征了不同質(zhì)量分?jǐn)?shù)的透明質(zhì)酸仿生黏液對界面穩(wěn)定性的影響;同時考察了透明質(zhì)酸和水分子之間的相互作用的強(qiáng)弱關(guān)系,分析了質(zhì)量比為1∶10的體系中透明質(zhì)酸和水分子之間的徑向分布函數(shù)(RDF)。體系中水分子遷移越快,仿生黏液擁有更好的疏水性,文中還分析了不同質(zhì)量分?jǐn)?shù)仿生黏液體系中水分子在透明質(zhì)酸周圍的均方位移(MSD),為設(shè)計多級微結(jié)構(gòu)表面仿生黏液-水界面穩(wěn)定性提供了思路。
模擬條件
分子力學(xué)方法首先通過計算分子各種可能構(gòu)象的勢能,得到分子勢能最低的構(gòu)象,即最穩(wěn)定的構(gòu)象,該過程被稱為能量最小化。該模型的結(jié)構(gòu)和能量最小化在Forcite模塊中進(jìn)行,采用的都是Smart geometry optimization對初始結(jié)構(gòu)進(jìn)行優(yōu)化。該優(yōu)化能夠較好地消除因搭建模型過程中可能造成的分子重疊、結(jié)構(gòu)不合理等引起的高能構(gòu)象,從而保證隨后的分子動力學(xué)模擬能夠正常運(yùn)行。Smart geometry optimization采用最速下降法、共軛梯度法和牛頓法對體系進(jìn)行優(yōu)化。對體系進(jìn)行優(yōu)化后,在正則系綜(NVT)下進(jìn)行了200 ps的分子動力學(xué)模擬,T=298 K,模擬步長設(shè)定為1 fs。采用Nose控溫法來控制溫度,范德華相互作用用Atom based方法計算,靜電相互作用用Ewald方法計算,截斷距離選為1.85 nm。系統(tǒng)達(dá)到平衡后,最后在平衡構(gòu)象的基礎(chǔ)上進(jìn)行150 ps的等溫等壓系綜(NPT)分子動力學(xué)計算,記錄數(shù)據(jù)用作后續(xù)的結(jié)構(gòu)和動力學(xué)分析。
在計算界面張力時,首先對界面張力的初始模型進(jìn)行優(yōu)化后,對其進(jìn)行300 ps的NPT模擬,溫度取298 K,目標(biāo)壓力為1.013 25×105Pa,壓力控制方法為Berendsen法控壓。然后對最后一幀進(jìn)行200 ps的NVT分子動力學(xué)模擬,范德華相互作用(vdW)選用Atom based方法計算,靜電相互作用選用Ewald方法,然后提取x、y、z坐標(biāo)軸方向的分壓,用于計算界面張力。
界面張力
分子動力學(xué)中認(rèn)為界面張力與不同方向上的壓力張量有關(guān),仿生黏液透明質(zhì)酸體系-水的界面張力通過KIRKWOOD和BUFF提出的力學(xué)定義來進(jìn)行計算。通過對5個不同質(zhì)量比的體系在平衡后200 ps的數(shù)據(jù)進(jìn)行統(tǒng)計,得到了一個仿生黏液和水界面的界面張力平均結(jié)果,如圖1所示。可見在研究的質(zhì)量比范圍內(nèi),透明質(zhì)酸仿生黏液與水的界面張力始終保持在(60.00±10)mN/m左右,其中透明質(zhì)酸和水分子的質(zhì)量比接近1∶10時,界面張力最小(為61.33 mN/m)。仿生黏液和水界面的界面張力越小,體系中仿生黏液和水界面的自由能就越低,界面就較穩(wěn)定。因此,可以認(rèn)為在研究的質(zhì)量比范圍內(nèi),質(zhì)量比1∶10時,模擬黏液-水的界面穩(wěn)定性最優(yōu)。這同時也證明,通過分子動力學(xué)模擬的方法可以初步預(yù)測仿生黏液在水體中的穩(wěn)定性。
圖1不同質(zhì)量比仿生黏液界面張力
結(jié)論
通過分子動力學(xué)模擬,研究了不同濃度仿生黏液-水界面的界面張力、界面相互作用能、均方位移(MSD)曲線和徑向分布函數(shù)(RDF)。結(jié)果表明,仿生黏液在透明質(zhì)酸分子和水分子在質(zhì)量比為1∶10時的界面張力最小為61.33 mN/m,得到的界面最穩(wěn)定。





